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Two-dimensional linear and nonlinear stern waves 

By H. J. HAUSSLING 
David W. Taylor Naval Ship Research and Development Center, 

Bethesda, Maryland 20084 

(Received 6 March 1979 and in revised form 12 June 1879) 

Numerical solutions are presented for the unsteady irrotational flow generated by the 
movement of the stern of a two-dimensional semi-infinite body a t  the free surface 
of an incompressible fluid. When separation occurs other than a t  a sharp trailing edge, 
the location of the separation point is computed as part of the solution. Linear and 
nonlinear results are compared. It is shown that for draught-based Froude numbers 
greater than 3 the nonlinear effects are negligible for most practical purposes 
while for Froude numbers less than three these effects can be significant. 

1. Introduction 
The hydrodynamic performance characteristics of a ship are largely determined by 

the details of the flow near the bow and the stern. For this reason, numerous efforts 
have been made to  analyse bow and stern flows. Baba (1976) discusses experimental 
and theoretical studies of such flows. He carried out a theoretical analysis of stern 
waves in which the ship’s hull was replaced by an assumed free-surface pressure 
distribution and near-field expansions were used with linearized free-surface boundary 
conditions. More exact application of both hull and free-surface condibions has so far 
been limited to two dimensions. Dagan & Tulin (1972) used perturbation expansions 
to study the nonlinear problem of steady bow flow past a semi-infinite two-dimen- 
sional flat-bottomed body. Vanden-Broeck & Tuck (1977) and Vanden-Broeck, 
Schwartz & Tuck (1978) extended this work to  nonlinear stern flows and included 
higher-order terms in the series expansions. 

To obtain solutions for transom sterns Vanden-Broeck, Schwartz & Tuck assumed 
that the water turns the corner a t  the sharp trailing edge and then rises on the transom 
to a stagnation point where separation occurs. Except perhaps for very low Froude 
numbers, a more realistic model results if the flow is assumed to separate a t  the corner. 
Haussling & Van Eseltine (1976) used such a model in a numerical study of the flow 
generated by two-dimensional planing bodies. Hulls without sharp trailing edges were 
also treated by computing the location of the separation point as part of the solution 
process. I n  such a case an additional condition is needed to assure uniqueness. For 
this purpose, i t  was required that the pressure on the wetted portion of the hull be 
greater than atmospheric pressure. Similar numerical techniques have now been 
extended to handle the nonlinear free-surface and exact hull boundary conditions. 
The methods have been used to compute the unsteady stern waves generated by two- 
dimensional semi-infinite hulls. This paper describes and compares the resulting linear 
and nonlinear solutions. 

While this paper was in the review process it was pointed out to the author that a 
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FICVRE 1. Ship stern (hatched) of draught d showing co-ordinate system, 
separation point at z = x8, and free surface y = 7. 

paper by Vanden-Broeck (1980) was also under review. I n  his recent work Vanden- 
Broeclr obtained numerical solutions of an integro-differential formulation for the 
steady nonlinear waves for a flat-bottomed hull when the flow separates a t  the trailing 
edge. He found that a steady-state nonlinear solution exists only for a draught-based 
Froude number greater than 2.23. The present unsteady solutions can be compared 
with these steady-state results of Vanden-Broeck. 

2. Mathematical formulation 
A study is made of the flow development resulting from the abrupt acceleration 

from rest to speed U of a semi-infinite ship hull in a free surface. The hull is of infinite 
span and of draught d as defined in figure 1. The fluid, which is infinitely deep, is 
initially a t  rest. An (x, y)  co-ordinate system moves with the body and has its origin 
a t  the intersection of the stern with the undisturbed free surface. It is assumed that 
the flow is irrotational and that the fluid is incompressible and lacks surface tension. 
It is also assumed that the upper boundary of the fluid can be described a t  any time 
t by specifying y as a single-valued function of x, i.e. y = ~ ( x ,  t ) .  This assumption is 
not valid if the waves approach breaking conditions. The upper fluid boundary 
coincides with the hull, y = f (x), upstream from the separation point a t  x = x,, and 
is a free boundary downstream from this point. The fluid boundary, velocities and 
pressure are assumed to be continuous a t  the separation point. When the hull has a 
sharp trailing edge below the undisturbed free-surface level, the flow is assumed to 
separate a t  the edge immediately after the acceleration of the hull. When there is no 
sharp trailing edge the initial location of the separation point is a t  the intersection 
of the hull with the undisturbed free surface. After the acceleration the separation 
point is free to move whether or not there is a sharp trailing edge. The location of 
separation is uniquely determined by two conditions. The pressure p on the hull 
upstream from the separation point must be greater than zero (atmospheric) and the 
free surface downstream from the separation point must be below the hull, ~ ( x ,  t )  < f ( x ) .  

For the upper boundary elevation 7 and the potential q5 for the velocity relative 
to a frame a t  rest, the dimensionless form of the initial/boundary-value problem in 
the moving reference frame is: 

q5rr+q5uu = 0 for -a < x < co, -co < y < 7; (1)  
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qt = ( - 1 -$,)q,+$, for xJt) < x < 00, y = 7; (2) 

7 =f(x)  for -00 < x < xs(t); (3) 

q5t = -q5z-q/Frz-i(q5i+$i) for xs(t) < x < 00 1 
Vq5.n = - i . n  for -co < x ,< xs(t) J y = q ;  ( 5 )  

(4) 

$z= 0 for x =  +00, -a < y < q ;  (6) 

& , = O  for - C Q < X < C O ,  y = - c o ;  (7) 

p > 0 for -co < x < xs(t), y = q ;  (8) 

~ ( x ,  t )  ,< f(x) for xs(t) < x < 0; (9) 

$( t  = 0) = 0 for --co < x < CO, --co < y < q ;  (10) 

a(t = 0) = 0 for 0 < x < co; (11) 

xs(t = 0) = 0. (12) 

The subscripts x, y and t denote differentiation with respect to these variables. 
The characteristic length and velocity scales in the dimensionless quantities are d ,  
the draught, and U ,  the speed of the hull. The Froude number is Fr = U / ( g d ) ) ,  
where g is the gravitational acceleration. The unit vector normal to the hull is n, and 
i is a unit vector in the x direction. 

The pressure on the hull can be computed from the Bernoulli equation 

P = - q5t - $2 - Hq5i + 4;) - Y P 2 .  (13) 

The problem can be linearized by dropping the terms $,qz in equation (2) and 
i($i + 4;) in equation (4), replacing equation (5) by $, = f,, and applying equations 
(2),  (4) and (5) at  y = 0. This linearization includes both the body and free-surface 
boundary conditions. The resulting problem is that of the flat-ship theory for planing 
surfaces. The linear theory is accurate for sufficiently small hull and free-surface 
slopes. 

3. Method of solution 
The solution technique is similar to that used by Haussling & Coleman (1979) to 

study nonlinear water waves generated by a submerged circular cylinder. In that 
work a numerically generated mapping was used to create a boundary-fitted co- 
ordinate system suitable for use in a finite-difference formulation. The simplicity of 
the geometry of the present problem allows a similar mapping to be applied exactly 
before the problem is discretized. The transformation 

5 = exP{c(Y -7)) (14) 

is applied to map the physical region in ( x , y )  space to a rectangular computational 
region in ( x , [ )  space bounded below by 6 = 0 and above by < = 1. The parameter c 
can be used to control the rate of expansion of the co-ordinate system in physical 
space. The governing equations are transformed according to the relations 

($x)y=constant = ($z)E=constant - 472 4 ~ >  
q5v = c5&. (15) 
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For instance, the Laplace equation (1) assumes the form 

where 
$xx + A$g + B$5 + C$Z5 = 0, 

A = c252(1 +YE), 
B = c w  1 + 73 - 7ZJY 
c = -2cgqx, 

(17) 

and where x derivatives now imply that [ rather than y is being held constant. The 
boundary conditions (6) are applied a t  computational boundaries far upstream and 
downstream rather than a t  infinity. Equation (1 6) is replaced by a system of finite- 
difference equations involving the values of $ on a uniformly spaced system of grid 
points in the (x,[) plane. Standard second-order central differencing is used. The 
resulting difference equations are solved iteratively using successive over-relaxation. 
The calculations are vectorized on a Texas Instruments Advanced Scientific Computer 
(TI-ASC) through use of the ‘red-black’ method for sweeping the mesh (Haussling 
1979). 

Euler’s modified method of time differencing is used to replace the free-surface 
boundary conditions ( 2 )  and (4) by 

77+1= @ + =$At(Ftf21+ F:j=1) (18) 

(19) 
n + l  and $i,j=l = #ij=1+ gAt(GT,$L1+ G:jzl), 

where the superscripts refer to  time levels, the subscripts i and j refer to the spatial 
location of grid points withj  = 1 indicating the upper boundary, At is the time incre- 
ment, and Fi,i and Gi,i are finite-difference approximations to the right-hand sides 
of ( 2 )  and (4). 

The implicit equations ( 1  8) and (19) are solved iteratively for $ and 9 at the ad- 
vanced time level. The iterative solution of these equations is combined with the 
iterative solution of equation (16). An adjustment of the surface elevation and the 
potential on the surface according to equations (18) and (19) is followed by an update 
of the Laplace equation coefficients according to equation (17) and then an adjustment 
of q5 below the surface according to equation (16) and the finite-difference approxi- 
mations to the boundary conditions (5)-(7). The iteration procedure is started with 
initial estimates of @+l and $if’ obtained by extrapolabion from two previous time 
levels. The iterations are halted when the percentage change of 9 and q5 from iteration 
to iteration is less than 1%. If, a t  the end of a time step, the pressure is negative at 
one or more grid points upstream from the separation point, that point is shifted 
upstream to eliminate the negative pressure region from the wetted surface of the 
hull. Alternatively, if the free surface downstream from the separation point moves 
upward to meet the hull, the wetted surface is extended as necessary. Thus, during 
the flow development, a grid point on the upper boundary can change its character 
between that of a hull point (x < x,) and that of a free-surface point (x > xJ. 

Although a t  the separation point both conditions (4) and (5) apply, only one can 
be enforced. Haussling & Van Eseltine (1976) found that, when the flow separates at  
a sharp trailing edge, the application of the hull condition (5) leads to a solution with 
a discontinuous pressure at  the separation point. However, the application of the 
free-surface condition (4) a t  x = x, (which enforces continuity of pressure) results in 



Two-dimensional linear and nonlinear stern waves 763 

-3 0 X 42 

FIGURE 2. Linear surface elevations at  t = 32Fr8 for a flat hull. 
-,Fr = 1 -  - - - - , F r  = 2 ;  - . - I -  , Fr = 4. 

solutions which approximately satisfy condition ( 5 )  a t  x = x,, and the error in satisfy- 
ing this hull boundary condition can be reduced by increasing the number of points 
used to  resolve the flow field. Thus in the present work the free-surface condition (4) 
is applied a t  x = x, and the hull condition (5) is enforced a t  that point only indirectly. 

To eliminate the numerical instability previously encountered in such unsteady 
nonlinear schemes a filtering procedure is applied. After each time step new values 
of ~ ? + l  and #?.il are computed according to the smoothing formula 

hi = [ -hi+Z-hi-z+ 4(h,+l+ hi-1) + 14hJ/16. (201 

This filtering scheme has previously been used successfully for nonlinear water wave 
problems (Longuet-Higgins & Cokelet 1976; Haussling & Coleman 1979). 

I n  the linearized case the length of the waves downstream from any disturbance is 
A, = 27rFr2. The lengths of the nonlinear waves are known to be smaller than those 
of the linear waves a t  the corresponding Froude number. For most of the calculations 
the computational upstream boundary was located a distance of 6h, from the stern 
and the downstream boundary was 14h, from the stern. For most cases twenty grid 
lines were used per linear wavelength in the x direction, Az = 4/20. When higher 
accuracy was desirable forty grid lines were employed per wavelength. The < direction 
was resolved with twenty grid lines. The factor c in the transformation (14) was chosen 
to  make the distance between the surface and the first grid line below the surface 
one-half the horizontal grid spacing. With twenty grid lines per wavelength there are 
8000 grid points. This grid system was tested on a pure linear progressing wave and 
was found to give excellent accuracy. With a time step of At = 0-2Fr2, which is just 
below the experimentally determined maximum stable time step, about 160 time 
steps and 5 min TI-ASC central processor time were needed to calculate the flow 
development from the impulsive start to  the time a t  which two essentially steady 
waves have developed behind the stern. 

4. Results 

The hull is described by 
Flat hull, linear 

y =f(x)  = - 1 for -m < x < 0. 

If the dimensionless variables x, y and t are replaced by new variables defined by 
dividing the old ones by Fr2, the linearized governing equations and boundary con- 
ditions are made independent of the Froude number. Thus the linear solutions are 
similar a t  all Froude numbers and need be computed only once. Figure 2 displays the 
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FIGURE 3. Surface elevations for a flat hull. --, unsteady linear at t = 1 4 U r a ;  
+, steady state computed by Vanden-Broeck (1980). 
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FIGURE 4. Linear and nonlinear surface elevations for a flat hull at 
Fr = 4. -, linear; - - - -. nonlinear. 

free-surface elevations for F r  = 1,  2, and 4 at t = 32Fr2. The first two waves in each 
train are almost fully developed, although farther downstream transient effects still 
dominate. The linear wavelength 27rFr2 is evident. The heights of the first two peaks, 
which are independent of Fr,  are about 1-6. This number is high compared to the 
exact value of 4 2  for the far-field wave amplitude given by Vanden-Broeck. The first 
peak is significantly influenced by its proximity to the stern but the second peak is 
not. Numerical experiments have shown that the most substantial contributions to 
this disagreement with the exact result come from the discretization of the horizontal 
direction and the lack of achievement of a precise steady state in the unsteady results. 
The calculation of very accurate steady-state results from an unsteady formulation 
can often be quite time-consuming. In  the present problem the final approach to 
steady state is gradual, with the free surface oscillating in time, with slowly diminishing 
amplitude, about its ultimate location. Additional calculations were carried out to 
t = 144Fr2 with 40 instead of 20 grid lines per wavelength. Computer cost was kept 
down by locating the downstream boundary 2 wavelengths from the stern and re- 
placing the far-field boundary condition (6) with the linear steady-state condition 
#(x, y) = #(x + A,, y). These results are compared in figure 3 with points digitized from 
figure 1 of Vanden-Broeck ( 1  980). The wave elevations at successive peaks and troughs 
downstream from the stern are 1.508, - 1.399, 1.429 and - 1.418, in good agreement 
with the exact results. 

Flat hull, nonlinear 

Linear and nonlinear results at  t = 512 for F r  = 4 are compared in figure 4. The linear 
solution is quite accurate because the wave slopes involved are small. The nonlinear 
waves have only slightly higher peaks and a slightly shorter wavelength. The pressure 
on the hull is essentially the same in the two cases. 

A similar comparison is made in figure 5 for Fr = 3. Streamlines for the nonlinear 
case are presented in figure 6. At this Froude number the difference between the 
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FIGURE 5. Linear and nonlinear waves for a flat hull at Fr = 3. 
- , linear; - - - -, nonlinear. 

FIGURE 6. Nonlinear streamlines for a flat hull at Fr = 3. 
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FIUURE 7.  Linear and nonlinear pressure on a flat hull at Fr = 3. 
- , linear; - - - -, nonlinear. 

linear and nonlinear surface elevations is more significant than a t  Fr = 4. The wave 
peak elevations are increased from y = 1.6 to y = 2.2 by the nonlinear effects. The 
troughs are raised from - 1.6 to - 1.2. The wavelength is shortened by an amount 
which is smaller than the horizontal grid spacing and thus cannot be measured 
accurately. This result is consistent with the wavelength change of about 2 yo for this 
case predicted by perturbation theory (von Kerczek & Salvesen 1974). 

Figure 7 shows that, for Fr = 3, the nonlinear hull pressure a t  t = 512 is only slightly 
higher than the linear pressure. 

I n  order to assess the size of the numerical errors both the linear and nonlinear 
cases were rerun to t = 144 with 40 instead of 20 grid lines per linear wavelength. 
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FIGURE 8. Nonlinear wave development for a flat hull with Fr = 2 .  
__ t = 1 6 .  _ _ _ _  t = 2 4 ; - . - . - , t  == 3 2 . - - -  , t = 40. 
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FIGURE 9. Linear surface elevations for flat and curved hulls with Fr = 3. 
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FIGURE 10. Pressure on flat and curved hulls with Fr = 3 .  -, flat: - - - -, curved. 

This doubling of the number of grid points resulted in small (5-10%) downstream 
shifts of the first wave peaks and similarly small reductions in the height of these 
peaks in both the linear and nonlinear cases. The most critical areas for resolution 
seem to be in the vicinity of the stern, where there is an abrupt transition from hull 
to free-surface conditions, and in the neighbourhood of the nonlinear wave peak, 
where the free surface is highly curved. 

The unsteady nonlinear solutions for Fr = 3 and 4 give every indication of approach- 
ing, to within the numerical accuracy, the steady-state nonlinear solutions which were 
found by Vanden-Broeck (1980). Vanden-Broeck showed that for Fr < 2.23 no 
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FIGURE 11. Surface elevations for curved hull. - - - -, Fr = 3 ; - , F r  = 4. 
The arrow denotes the separation point for Fr = 4. 
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FIGURE 12. Pressures on the curved hull. - - - -, Fr = 3 ;  __ , F r  = 4. 

steady-state solution exists. However, in this lower Froude number range unsteady 
solutions can be obtained. Such a nonlinear flow evolution was computed for Fr = 2 
using 40 grid lines per wavelength. Figure 8 shows the free-surface profiles a t  various 
times. A wave peak grows quickly a t  about x = 8. The upstream face of this wave 
steepens until accurate resolution is no longer possible with the present model. The 
calculations cease to converge shortly after t = 40. I n  reality, this wave would probably 
become a breaking stern wave. The evolution here is quite similar to that computed 
by Haussling & Coleman (1979) for a large-amplitude wave generated by a submerged 
circular cylinder. 
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Curved hulls 

Curvature of the hull affects both the waves and the pressure on the hull. For instance, 
shaping the hull to conform to the expected wave shape at a particular Froude 
number should lower the wave height and reduce the hull pressure. The linear results 
for Fr = 3 in figures 9 and 10 show that a hull with a & period sinusoidal shape near 
the stern 

f(x) = - 1  for -a < x < -4-57~, 

f(x) = sin(s/9) for -4 .57~ < x < 0, (22) 

generates waves with amplitude 1.3 and exhibits a pressure which is indeed lower 
than that on the flat hull at  the same Froude number. At higher Froude numbers the 
flow will separate before the trailing edge. At Fr = 4 the separation point moves 
forward rapidly after the acceleration of the hull. It becomes steady at  x = - 10.8. 
The steady-state surface elevations for Fr = 3 and 4 are compared in figure 11. In  
this figure the vertical scale has been exaggerated. The corresponding hull pressure 
distributions are shown in figure 12. 

5. Summary 
Numerical methods have been used to analyse the unsteady linear and nonlinear 

waves generated by the stern of a semi-infinite two-dimensional body at  the surface 
of a fluid. The flow was assumed to separate smoothly from the hull a t  a sharp trailing 
edge or further upstream if the hull pressure fell to zero. The linear waves for a flat- 
bottomed-body approach the steady state predicted for this problem by Vanden- 
Broeck (1980). Nonlinear effects, especially on the hull pressure, are rather small for 
Fr > 3 but are quite significant for Fr < 3. Locally steady-state nonlinear solutions 
have been obtained for Fr = 3 and 4. For Fr = 2 a transient nonlinear development 
was followed to a point at which the wave slope was quite large and the calculations 
broke down. These results are consistent with Vanden-Broeck’s finding that nonlinear 
steady-state solutions exist only for Fr > 2.23. For curved hulls solutions have been 
obtained by following the movement of the separation point. 

This work was supported by the Numerical Naval Hydrodynamics Program at the 
David W. Taylor Naval Ship Research and Development Center. This program is 
sponsored jointly by DTNSRDC and the Office of Naval Research. 
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